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This paper studies the effect of the space (distance) between lotteries' outcomes on risk-

taking behavior and the shape of estimated utility and probability weighting functions. 

Previously investigated experimental data shows a significant space effect in the gain 

domain. As compared to low spaced lotteries, high spaced lotteries are associated with 

higher risk aversion for high probabilities of gain and higher risk-seeking for low 

probabilities of gain. Hence, the investigation is carried under cumulative prospect 

theory that respects framing effect and characterizes risk attitudes with respect to 

probabilities and outcomes. The observed certainty equivalents of lotteries are assumed 

to be driven by cumulative prospect theory. To estimate the parameters of cumulative 

prospect theory with maximum likelihood, the usual error term is added. The 

cumulative prospect theory is incapable of explaining the space effect as its parameters 

cannot explain the average behavior. Taking account of heterogeneity, a two-

component mixture model shows that behavioral parameters of around 25% of the 

sample can explain the observed differences in relative risk aversions. The results 

confirm the previous findings of aggregation bias associated with representative-agent 

models. Furthermore, the results have implications for experimental designs as high 

space between lotteries' outcomes is required to guarantee the curvature of utility 

functions. 

Keywords: Space Effect, Cumulative Prospect Theory, Decision Making Under Risk, 

Finite Mixture Model. 

JEL Classification: C91, D81. 

 

1 Introduction 
There has been growing interest in examining different sources of systematic 

variations in individuals' behaviour under risk (Etchart-Vincent 2004, 2009; 

Feltovich et al. 2012; Einav et al. 2012; Fehr-Duda et al. 2010). In economics, 

risky situations are modeled by lotteries; hence it is reasonable to study the 

characteristic of lotteries and their effect on risk-taking behaviour. This paper 
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aims to examine the effect of the space between lotteries' outcomes on 

individuals' risk attitudes and structural estimation of preferences by 

incorporating the heterogeneity within and among individuals. 

The space effect is a relevant area of research as, for many people, financial 

investments are usually triggered or characterized by a large difference 

between potential outcomes. Etchart-Vincent's (2009) study suggests that as 

compared to low-spaced lotteries, high-spaced lotteries tend to increase 

probability overweighting. Etchart-Vincent (2009) showed that the impact of 

space is both opposite to and stronger than the impact of level in the loss 

domain. The effect of the level of outcomes on risk attitudes has been debated 

for decades. Hence, it is interesting to examine the space effect and search for 

its plausible explanation. 

Furthermore, when we want to elicit utility and probability weighting 

functions from lottery choices, there is no consensus on the choice of payoffs 

distribution, as the theory makes no distinction. For making comparisons, 

outcomes are usually transformed to be between 0 and 1 in the gain domain 

and -1 and 0 in the loss domain. This transformation is needed to reduce the 

effect of a payoff distribution. This study examines the effect of the space 

between the outcomes on risky choices after transforming the data and 

including appropriate error specifications. It is especially important for 

experimental designs where changes in payoffs' distribution might confound 

conclusions based on hypothesis testing. 

Psychologists have demonstrated the sensitivity of individuals' risk-taking 

behaviour to their daily experience (Ungemach et al. 2011), the level of 

outcomes (Stewart et al. 2015), the size of the sample (Hilbig and Glockner 

2011), and the information sources (Hertwig et al. 2004). Stewart et al. (2006) 

proposed a new theory called the decision by sampling to take account of the 

distribution of payoffs. Since the essence of the decision by sampling is based 

on outcomes' rank in the sample and subjects' memory recall, it cannot 

accumulate the space effect either. However, the important question is 

whether the shape of utility and probability weighting functions or their degree 

of concavity/convexity changes according to subjects' level of risk aversion 

determined by their choices. Only then, we can dissociate the variability of 

choices due to the characteristic of lotteries from different sources of 

heterogeneity. 

Experimental data are subject to heterogeneity within and among 

individuals and differentiating the choices' noise from true variations can 

depend on the error specification (Loomes 2005). Variability within 

individuals' choices, which concerns about the mood of subjects, their 
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characteristics, their mistakes, and inattentiveness, is modelled by adding the 

appropriate stochastic component to deterministic choice models. The 

heterogeneity among individuals due to the existence of distinct behavioural 

types can be modelled by means of finite mixture models. In other words, the 

substantive heterogeneity in individual risk-taking behaviour makes a single 

representative-agent model inadequate to describe behaviour. 

I use previously investigated data by Bruhin et al. (2010) that elicit 

certainty equivalents of two outcome lotteries. I divide the data into two 

treatments. High spaced treatment in which the space between the outcomes 

of the lotteries is higher than 30, which is the median of outcomes, and low 

spaced treatment where the space between the outcomes is less or equal to 30. 

Then, the behaviour of subjects are classified according to their relative risk 

premia. The space effect shows an increase in relative risk aversion for high 

probabilities of gain and a decrease in relative risk aversion for low 

probabilities of gain. In the loss domain, there is no coherent picture. Thus, a 

single representative model that does not take account of framing effect and 

characterizes risk attitudes irrespective of probabilities cannot accumulate all 

the observed differences. Hence, I carry the investigation under cumulative 

prospect theory with different error specifications. The results suggest that the 

space effect cannot be explained by changes in the parameters of cumulative 

prospect theory due to the heterogeneity among individuals. 

As recent studies suggest that behaviour might be better characterised with 

more than one decision making processes, I fit the data from each treatment 

to a two-component mixture model. It is as if we assume there are two types 

of individuals. Considering heterogeneity through the mixture model, I find 

that the minority group's risk-taking behavior can explain the space effect. 

This finding shows that sometimes it is worth introducing extra parameters to 

gain explanatory power and tackle the problem associated with a single 

representative model that cannot explain the variation in the data. 

The schematic outline of the paper is the following. Section 2 presents a 

literature review. Section 3 explains the experiment and the data. Section 4 

outlines the econometric model used to measure risk attitudes. Section 5 

provides the results. Section 6 discusses the results and concludes. 

2 Literature Review 
Economic models strive to take account of the heterogeneity of the population 

by different means. When observed outcomes are drawn from a finite mixture 

of distributions, finite mixture models are used to model population 

heterogeneity while estimating structural parameters. McLachlan and Peel 
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(2004) provide an excellent explanation of finite mixture models and how to 

estimate them. Here, I present the basic definition of finite mixture models 

from Cameron and Trivedi (2005). If the sample is a probabilistic mixture 

from two sub-population with 𝑝𝑑𝑓 𝑓1(𝑦|𝜇1(𝑥)) and 𝑓2(𝑦|𝜇2(𝑥)), 

then 𝜋𝑓1(. ) + (1 − 𝜋)𝑓2(. ), where0 ≤ 𝜋 ≤ 1, defines a two-component 

finite mixture model. That is, observations are drawn from 𝑓1 and 𝑓2, with 

probabilities 𝜋 and 1 −  𝜋 respectively. The parameters to be estimated are 

(𝜋, 𝜇1, 𝜇2). The parameter 𝜋 may be treated as constant or maybe further 

parameterized. Thus, we think of types of individuals, those that come from 

𝑓1(. ), and those that come from 𝑓2(. ). The interpretation is that a linear 

combination of densities makes a good approximation to the observed 

distribution of 𝑦. In many applications such as this study, 𝜇1 and 𝜇2 are 

further parameterized. Although generalization to additive mixtures with three 

or more components is in principle straightforward, it is subject to potential 

problems of identifiability of the components. Therefore, it is very helpful in 

an empirical application if the components have a natural interpretation. We 

can simply think of each sub-population as a type or as a representation of 

population heterogeneity. 

The estimation of the finite mixture model may be carried out under the 

assumption of either known or unknown number of components, which will 

be denoted by 𝑐 = 1, … , 𝐶. If the fraction 𝜋𝑐𝑠 are known, maximum 

likelihood estimates of the component distributions can be carried out. 

Usually, the proportions 𝜋𝑐 are unknown and the estimation involves both the 

𝜋𝑐 and the parameters of each component. The latter is by iterative 

expectation-maximization (EM) algorithm (Dempster et al., 1977) that is a 

general method of finding the maximum likelihood estimate from a given data 

set when the data is incomplete. 

Mixture models are widely used throughout applied statistics, including 

labour economics, industrial organization, and computer science (Adams, 

2016). Finite mixture models are featured in many areas of econometrics and 

several strategies for the identification of finite mixtures have been developed 

(Henry et al. 2014). For example, Eckstein and Wolpin (1990) and Keane and 

Wolpin (1997) model individual heterogeneity in labor markets by a finite 

number of types. Finite mixture models are used in experimental economics 

as well. In public goods experiments, Bardsley and Moffatt (2007) allow four 

types of individuals; reciprocators, strategists, altruists, and free-riders. They 

estimate a finite mixture 2-limit tobit with tremble and show while most 

subjects act selfishly, a substantial proportion are reciprocal with altruism 

playing only a marginal role. 
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Similarly, some researchers have examined the possibility of having 

different subjects following different decision theories for choices under risk 

(Harrison and Rutstrom, 2009; Conte et al., 2011; Bruhin et al., 2010). By 

allowing the plausible competing theories to coexist in the sample, mixture 

models provide a reconciliation of the debate over dominant theories of choice 

under risk (Harrison and Rutstrom, 2009). Mixture models take account of the 

fact that different individuals may have different preference functions. 

According to Kasahara and Shimotsu (2009), the attractive feature of the finite 

mixture model is that it provides flexible ways to account for unobserved 

heterogeneity. Thus, if we assume that individuals' behavior can be explained 

by a finite (C) number of data generating processes, mixture models assume 

that each individual behavior can be regarded as a draw from one of these C 

latent decision-making processes. Hence, it enables us to estimate the 

magnitude of these latent decision-making processes, as well as their 

parameters of interest. 

For modeling choices under risk, most studies consider outright choices 

between lotteries and assume that data is generated by the expected utility and 

one or more additional competing decision-making processes. For example, 

Harrison and Rutstrom (2009) assumed that data is generated by expected 

utility and prospect theory. They found almost equal support for each theory 

and examined the role of demographics on theories' performances. Harrison 

and Rutstrom (2009) consider the finite mixture model as a statistical device 

for estimating the parameters of the model at the same time as one estimates 

the probability that each model applies to the sample. This approach indicates 

that one should not assume any model as the correct model, but as a model for 

a distinct type of individuals. 

With similar outright choice data, Conte et al. (2011) considered expected 

utility and rank dependent utility with different specifications and concluded 

that a representative agent model gives a distorted view. Their findings 

suggest that 20% of the population are expected utility maximizers and 80% 

are rank dependent utility maximizers. The work of Bruhin et al. (2010) is 

interesting in a sense that it uses certainty equivalents of lotteries rather than 

outright choices between them and investigates the number of mixture 

components as well. Furthermore, their approach allows for more flexibility 

as the expected utility types are not imposed as a priori in the estimation 

procedure. When assuming two components, their results suggest the same 

mixing proportion between the expected value and cumulative prospect theory 

from three different data sets. Nearly 20% of the subjects are classified as 
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expected value maximizers and 80% are classified as cumulative prospect 

theory maximizers. 

3 The Experiment and the Data 
The data used in this study is previously collected by Bruhin et al. (2010). The 

experiment was conducted in Zurich in 2006 when 1 Swiss franc equaled 

about 0.84 U.S. dollars. 118 subjects were drawn from the subject pool of the 

Institute for Empirical Research in Economics, which consists of students of 

all fields of the University of Zurich and the Swiss Federal Institute of 

Technology Zurich. The certainty equivalent of 40 lotteries were elicited for 

each subject.1 Half of the lotteries were framed as gains and the other half 

were framed as losses.  

Table 1 

Gain lotteries (𝑥 1, 𝑝; 𝑥 2, 1 − 𝑝) 
p   𝒙 𝟏  𝒙𝟐  |𝒙𝟏 − 𝒙𝟐|    p  𝒙 𝟏  𝒙𝟐  |𝒙𝟏 − 𝒙𝟐| 
0.9 10 20 10   0.50 20 50 30 

0.5 0 10 10 0.25 10 40 30 

0.5 10 20 10 0.25 20 50 30 

0.1 10 20 10 0.05 10 40 30 

0.5 0 20 20 0.05 20 50 30 

0.95 10 40 30 0.95 0 40 40 

0.95 20 50 30 0.75 0 40 40 

0.75 10 40 30 0.05 0 50 50 

0.75 20 50 30 0.95 50 150 100 

0.5 10 40 30 0.90 0 150 150 

For each loss situation, subjects were endowed with a guaranteed amount 

of money to compensate for any potential losses. The probabilities and 

outcomes defining the 40 lotteries in the gain domain are listed in Table 1. 

Accordingly, Table 2 shows loss lotteries. To prevent any order effect, the 

ordering of the lotteries were randomized. The random lottery incentive 

system was applied where at the end of the final session, one of the subject's 

choices was selected at random and played for real. Besides, each subject 

received 10 Swiss francs as a show-up fee. 

                                                                                                                             
1 The elicitation procedure can be found in Bruhin et al. (2010, p.1379). 
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Table 2 

Loss lotteries (𝑥 1, 𝑝; 𝑥 2, 1 − 𝑝) 
p   𝒙 𝟏 𝒙𝟐   |𝒙𝟏 − 𝒙𝟐|   p   𝒙 𝟏  𝒙𝟐   |𝒙𝟏 − 𝒙𝟐| 
0.1 -10 -20 10   0.50 -20 -50 30 

0.5 0 -10 10 0.75 -10 -40 30 

0.5 -10 -20 10 0.75 -20 -50 30 

0.9 -10 -20 10 0.95 -10 -40 30 

0.5 0 -20 20 0.95 -20 -50 30 

0.05 -10 -40 30 0.05 0 -40 40 

0.05 -20 -50 30 0.25 0 -40 40 

0.25 -10 -40 30 0.95 0 -50 50 

0.25 -20 -50 30 0.05 -50 -150 100 

0.5 -10 -40 30 0.10 0 -150 150 

4 Econometric model 
Using lotteries' certainty equivalents, I estimate the parameters of cumulative 

prospect theory (CPT) for each treatment (Tversky and Kahneman, 1992). I 

assume CPT as the underlying theory of decisions under risk as it captures 

framing effect and non-linear probability weighting. Moreover, CPT nests 

expected utility as a special case. Since there are no mixed lotteries in the data, 

I assume a zero reference point and use the term utility function instead of the 

value function. Furthermore, as a representative-agent model might not take 

account of the heterogeneity among individuals, a two-component mixture 

model is used. The maximum likelihood procedure used in the estimation of 

CPT is a special case of the mixture model when the number of components 

is one and hence, not reported. Conte et al. (2011) briefly discussed the 

problems with fitting data subject by subject and aggregate data fitting. The 

individual by individual analysis has the problem of heterogeneity within the 

subjects, as demonstrated by Hey (2001). Hence, many studies focused to 

incorporate different sources of heteroskedastic errors. While aggregate data 

analysis saves on degrees of freedom, it cannot take account of heterogeneity 

among subjects, as individuals are different in terms of their preference 

functions and their parameters. 

Recently, the possibility of having more than one decision-making process 

for risky choices have been examined. Mixture models take account of the fact 

that different individuals may have different preference functions. According 

to Cameron and Trivedi (2005), the attractive feature of the finite mixture 

model is that it leads to a flexible parametric distribution. Moreover, it is a 

natural and simple way to treat population heterogeneity. Thus, if we assume 

that individuals' behaviour can be explained by a finite (C) number of data 

generating processes, mixture models assume that each individual behaviour 
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can be regarded as a draw from one of these C latent decision-making 

processes. Hence, it enables us to estimate the magnitude of these latent 

decision-making processes, as well as their parameters of interest. 

Bruhin et al. (2010) used mixture models to estimate the parameters and 

the proportion of decision-making processes from certainty equivalents of 

simple lotteries. CPT as a deterministic choice model dictates the amounts of 

certainty equivalents. Hence, in order to estimate the parameters of the model, 

we have to add an error term, 𝜀𝑖𝑔. While there might be different sources of 

error, I follow Bruhin et al. (2010) and allow for three different sources of 

heteroskedasticity in the error variance. First, the error variance is proportional 

to the lottery's range. This is because, in the elicitation procedure, subjects had 

to choose between a lottery and 20 certain amounts, which are equally spaced 

throughout the lottery's range. Secondly, as subjects are indeed different, I 

allow the error variance to differ by individuals. Lastly, because of an 

asymmetry between gains and losses, I allow for domain-specific errors. 

According to CPT, the value of any binary lottery 𝐺𝑔  =  (𝑥𝑔; 𝑝𝑔;  𝑦𝑔;  1 −

𝑦𝑔), with 𝑦𝑔 > 𝑦𝑔 > 0 is given by: 

𝑢(𝑔) = 𝑤(1 − 𝑝𝑔)𝑢(𝑦𝑔) + (1 − 𝑤(1 − 𝑝𝑔)) 𝑢(𝑥𝑔)  (1) 

Hence, the lottery's certainty equivalent 𝑐�̂�𝑔 can be written as: 

𝑐�̂�𝑔 = 𝑢−1 (𝑤(1 − 𝑝𝑔)𝑢(𝑦𝑔) + (1 − 𝑤(1 − 𝑝𝑔)) 𝑢(𝑥𝑔)) (2) 

We have to assume specific functional forms for the utility function 𝑢(𝑥) 

and the probability weighting function 𝑤(𝑝). As the point of this study is to 

examine the space effect and not finding the best fit, I focus only on one 

specification for the utility and probability weighting functions. A natural 

candidate for 𝑢(𝑥) is a power function: 

𝑢(𝑥) = {
𝑥𝛼  𝑖𝑓 𝑥 ≥ 0

−(−𝑥)𝛽 𝑖𝑓 𝑥 < 0
  

With 𝛼 > 0 and > 0 . This is proven to be the best fit for experimental data 

(Stott 2006). The absence of the loss aversion parameter in this specification 

is because of a lack of mixed lotteries when the loss aversion parameter is not 

identifiable. For the probability weighting function, I use the two-parameter 

specification by Goldstein and Einhorn (1987) abbreviated by GE. The GE 

specification is given by: 
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𝑤(𝑝) =  
𝛿𝑝𝛾

𝛿𝑝𝛾+(1−𝑝)𝛾 , 𝛿 > 0, 𝛾 > 0  

Following Bruhin et al. (2010), I favour this specification because it can be 

conveniently interpreted.While 𝛾 captures the curvature, 𝛿 governs elevation 

and determines the intersection point. Note that the information about subjects 

is captured by their certainty equivalents. By incorporating three sources of 

heteroskedasticity, the standard deviation of the error term can be written as 

σ𝑖𝑔  =  𝜉𝑖 (𝑥𝑔 − 𝑦𝑔) where 𝜉𝑖  denotes an individual domain-specific 

parameter and 𝑦𝑔 , and 𝑥𝑔 refer to the lottery's range. Thus, the observed 

certainty equivalent ce𝑖𝑔 can then be written as ce𝑖𝑔  =  𝑐�̂�𝑖𝑔  + 𝜀𝑖𝑔, where the 

subscript 𝑖 refers to individuals and 𝑔 refers to lotteries.1  

The two-component mixture model assumes that individuals' choices are 

characterized by one of the two types of behaviour, each characterized by a 

distinct vector of parameters 𝜃𝑐 = (𝛼𝑐 , 𝛽𝑐 , 𝛾𝑐 , , �̂�𝑐)2 Note that the distinction 

between the types is by restrictions on parameters and there might be for 

example no expected utility types in the sample if the parameters of the 

probability weighting function for both types are significantly different from 

one, as for 𝛾 =  1 and 𝛿 =  1 the GE function becomes linear. Since, 

𝑐𝑒𝑖𝑔~𝑁(𝑐�̂�𝑖𝑔, σ𝑖𝑔) the density of type C for the 𝑖th individual can be expressed 

as: 

𝑓(𝑐𝑒𝑖𝑔; 𝜃𝑐, 𝜉𝑖 ) = ∏
1

𝜎𝑖𝑔√2𝜋
 𝑒

−
1

2
(

𝑐𝑒𝑖𝑔− 𝑐�̂�𝑖𝑔 

𝜎𝑖𝑔
)2

𝐺
𝑔=1   

Pooling over all individuals and summing over all C components give us 

the model's likelihood L. 

𝑓(𝑐𝑒, 𝜓) = ∑ 𝜋𝑐
𝐶
𝑐=1 ∏ 𝑓(𝑐𝑒𝑖𝑔; 𝜃𝑐, 𝜉𝑖 )

𝑁
𝑖=1   

The log-likelihood of the finite mixture model is then given by: 

𝑙𝑛 𝐿(𝜓|𝑐𝑒) = ∑ 𝑙𝑛 ∑ 𝜋𝑐
𝐶
𝑐=1 𝑓(𝑐𝑒𝑖𝑔; 𝜃𝑐 , 𝜉𝑖)𝑁

𝑖=1   

where the vector 𝜓 = (𝜃1, … , 𝜃𝑐 , 𝜋1, … , 𝜋𝑐−1, 𝜉1, … , 𝜉𝑁)summarises all the 

parameters of interest. The log-likelihood is maximized by the iterative 

expectation maximization (EM) algorithm (Dempster et al. 1977), which also 

                                                                                                                             
1 𝜉𝑖 = ξ  is rejected as likelihood ratio test has a zero p-value 
2 𝛾𝑐 and �̂�𝑐 are vectors containing the domain-specific parameters of the probability weighting 

functions. 
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provides individuals' posterior probability of belonging to group 𝐶 by 

Bayesian updating.  

5 Result 

5.1 Raw Data Analysis 
After clustering the data into high spaced treatment and low spaced treatment, 

we are left with 3502 observations for the low spaced treatment and 1167 

observations for the high spaced treatment. Using relative risk premia =

 
𝐸𝑉−𝐶𝐸

𝐸𝑉
 , where 𝐸𝑉 denotes expected value and 𝐶𝐸 stands for certainty 

equivalent, subjects' behaviour is classified to risk-averse (𝑅𝑅𝑃 >  0), risk-

loving (𝑅𝑅𝑃 <  0) and risk-neutral (𝑅𝑅𝑃 =  0). In the high spaced treatment, 

on average 38% of choices exhibit risk-averse behaviour. However, 58% of 

choices exhibit risk aversion in the low spaced treatment. Hence, on average 

subjects made more risky choices in the high spaced treatment as compared to 

low spaced ones. Moreover, there was not a single risk-neutral observation. 

 
Figure 1. Median RRP. 

Source: Research Findings 
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The data is consistent with the fourfold pattern of risk attitudes. It predicts 

risk-seeking behaviour over low probability gains and high probability losses. 

Furthermore, the pattern predicts risk aversion for low probability losses and 

high probability gains. Figure 1 shows the median RRP sorted by p, the 

probability of the more extreme outcome. Since there is a systematic 

relationship between RRP and p, average behaviour is better described by a 

model such as CPT. 

 
Figure 2. Gain Domain. 

Source: Research Findings 

In the gain domain, Figure 2 depicts the median RRP for both treatments 

under consideration. The black bars correspond to high spaced lotteries, and 

the grey bars represent low spaced lotteries. As it appears, the magnitude of 

RRPs increase as the space between lotteries increases. It can be interpreted 

as subjects' more dramatic reaction when dealing with high spaced lotteries. 

Furthermore, choices in the high spaced treatment reveal a higher degree of 

risk aversion for the only high probability under consideration and a 

substantially higher degree of risk tolerance for low probabilities. It is contrary 

 [
 D

O
I:

 1
0.

52
54

7/
jm

e.
16

.4
.5

33
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 jm
e.

m
br

i.a
c.

ir
 o

n 
20

25
-0

4-
21

 ]
 

                            11 / 22

http://dx.doi.org/10.52547/jme.16.4.533
https://jme.mbri.ac.ir/article-1-502-en.html


544 Money and Economy, Vol. 16, No.4, Fall 2021 

to the stake effect found by Fehr-Duda et al. (2010), in which high stakes 

induce a higher degree of risk aversion overall probabilities. 

 
Figure 3. Loss Domain. 

Source: Research Findings 

The inspection of Figure 2 implies a significant difference between RRPs 

from high and low spaced lotteries. Wilcoxon rank-sum tests confirm the 

space effect as the absolute values of RRPs from the low spaced treatment 

except for p = 0:25 are significantly smaller than the high spaced ones. 

Figure 3 shows the median RRPs for both treatments in the loss domain. 

Choices in the high spaced treatment are not consistent with the fourfold 

pattern of risk attitudes as for two low probabilities they exhibit risk-seeking 

whereas they should indicate risk aversion. While there is a substantially 

higher risk aversion for the lowest probability under consideration (0.05) in 

the high spaced treatment, we observe risk-seeking behaviour for the other 

two low probabilities. Moreover, there is not a significant difference between 

risk-seeking behaviour for high probabilities of loss between the two 

treatments. High spaced RRPs are insignificantly different from low-spaced 

ones at the probability level of 0.05 and 0.25. Therefore, analogous to the size 

effect, there is no coherent change in relative risk aversion in the loss domain. 
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In the next section, I examine whether the observed changes in relative risk 

aversion can be attributed to a specific component of lotteries evaluation. The 

stake effect implies lower degree of risk-seeking for low probabilities of gain 

when dealing with high stakes. 

5.2 Single Model 
When assuming CPT preferences, Table 3 reports the parameter estimates. 

The first interesting result is that the utility functions in both domains become 

almost linear over the low spaced lotteries, which is consistent with the 

previous findings that low outcomes induce linear utility functions. However, 

in the low spaced treatment we have outcomes as high as 50. Therefore, in 

order to guarantee the curvature of the utility function, we are required to take 

account of both the size of the outcomes and the space between them. 

Table 3 

CPT parameters for low and high spaced lotteries 
            𝝃𝒊 = 𝝃   

Parameters  High Low Pooled  High Low Pooled 

Gains         

𝛼  0.9556 1.007 0.9164  0.8445 1.0567 0.8259 

  (0.0027) (0.0012) (0.0005)  (0.0023) (0.0044) (0.0004) 

𝛾  0.6381 0.4947 0.5189  0.4859 0.4605 0.4844 

  (0.0003) (0.0001) (0.0001)  (0.0004) (0.0001) (0.0001) 

𝛿  0.8017 0.8517 0.8859  0.8085 0.765 0.8489 

  (0.0053) (0.0005) (0.0004)  (0.0061) (0.0011) (0.0007) 

Losses         

𝛽  0.8972 1.0079 1.0934  2.1083 0.9591 1.3809 

  (0.0134) (0.0015) (0.0011)  (0.2212) (0.0048) (0.0041) 

𝛾  0.5825 0.5674 0.5785  0.6916 0.4808 0.548 

  (0.0012) (0.0003) (0.0002)  (0.0071) (0.0001) (0.0001) 

𝛿  1.4963 1.0602 1.0387  0.4388 1.1800 0.9487 

  (0.0749) (0.001) (0.0009)  (0.0373) (0.0028) (0.0027) 

Ln L  1968 5129 10670  1442 4186 8264 

Parameters  242 242 242  7 7 7 

Individuals   118 118 118  118 118 118 

Observations  3502 1167 4669  3502 1167 4669 

Source: Research Findings 

As risk attitudes under CPT are decomposed to attitudes towards 

probabilities and attitudes towards outcomes (payoffs), the observed 

difference in RRPs in the data is not explained by a specific component of 

lotteries evaluation. The reason might be that when we jointly estimate the 
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utility and probability weighting functions, we allow for some flexibility 

between the two functions. Recall the fourfold pattern of risk attitudes and the 

difference in RRPs for each probability. As compared to low spaced gain 

lotteries, high spaced gain lotteries increase risk aversion over high 

probabilities and increase risk-seeking over low probabilities. Thus, if the 

observed difference were driven by a change in the probability weighting 

function, a more pronounced probability weighting function was expected in 

the high spaced treatment. However, 𝛿 which controls the elevation is higher 

in the low spaced treatment and 𝛾, which controls the curvature of the 

probability weighting function is lower in the low spaced treatment. 

Furthermore, the curvature of the utility functions cannot explain the average 

behaviour either. 

Prelec (2000) demonstrated the interesting feature of using power function 

in CPT model, the unique measure of risk attitudes in terms of structural 

parameters. Here, I extend Prelec example to two outcome simple lotteries. In 

a choice between a risky lottery 𝐿 =  (𝑥;  𝑝;  𝑎𝑥;  1 −  𝑝), with 𝑥 >  𝑎𝑥 >  0 

and the sure receipt of its expectation 𝑏 =  (𝑝𝑥 +  𝑎𝑥 − 𝑝𝑎𝑥), the lottery will 

be preferred if: 

𝑤(𝑝)𝑥𝛼 + (1 − 𝑤(𝑝))𝑎𝛼𝑥𝛼 > (𝑝𝑥 + 𝑎𝑥 − 𝑝𝑎𝑥)𝛼  

𝑤(𝑝)(𝑥𝛼 − 𝑎𝛼𝑥𝛼) > 𝑏𝛼 − 𝑎𝛼𝑥𝛼  

𝑤(𝑝) >
𝑏𝛼−𝑎𝛼𝑥𝛼

𝑥𝛼−𝑎𝛼𝑥𝛼  

If we denote 
𝑏𝛼−𝑎𝛼𝑥𝛼

𝑥𝛼−𝑎𝛼𝑥𝛼 = 𝑑, then the condition is: 

𝑤(𝑝) > 𝑑  

As it appears from the unique measure of risk attitudes; for a given two 

outcome lottery, risk-seeking behaviour depends on both outcomes, their 

probability of occurrence, the space between them and the subjective weight 

of outcomes and probabilities.1 Therefore, for 𝑤(𝑝) −  𝑑 >  0 we observe 

risk-seeking behaviour and for 𝑤(𝑝)  −  𝑑 <  0 we observe risk aversion. 

Like 𝑅𝑅𝑃 we use the magnitude of |𝑤(𝑝)  −  𝑑| to differentiate between the 

two treatments. In both treatments, on average, subjects exhibit risk-seeking 

behaviour over 𝑝 =  (0.05, 0.10, 0.25). For these probabilities, |𝑤(𝑝)  −

                                                                                                                             
1 In case of 𝑎 =  0, we get risk seeking behaviour when probability weighting function 

overrides the curvature of the utility function (𝑤(𝑝)  >  𝑝𝛼). 
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 𝑑|is higher in the low spaced treatment as compared to the high spaced 

treatment. Hence, the unique measure of risk attitudes cannot explain the 

observed difference in 𝑅𝑅𝑃s.1 

In order to rectify the pattern of risk attitudes observed in the row data, I 

imposed typical utility functions and then estimated the probability weights. 

With the imposed parameters of utility functions ( 𝛼 =  𝛽 =  0.80), the result 

is the following: It appears from Table 4 that the elevation parameter of the 

probability weighting function changes dramatically. In the gain domain, 𝛿 

becomes higher in the high spaced treatment, which can explain the difference 

in 𝑅𝑅𝑃s for each probability between the two treatments. With the imposed 

utility functions Figure 4 depicts the probability weighting functions in each 

domain that clearly represent the observed risk attitudes sorted by 

probabilities. 

Table 4 

Estimation with the imposed utility functions 
Parameters High Low Pooled 

Gains    

𝛾 0.6190 0.4907 0.5057 

 (0.0003) (0.0001) (0.0001) 

𝛿 1.0281 0.9874 0.9810 

 (0.0015) (0.0002) (0.0002) 

Losses    

𝛾 0.5619 0.5606 0.5787 

 (0.0006) (0.0002) (0.0002) 

𝛿 1.7517 1.2332 1.3174 

 (0.0038) (0.0004) (0.0004) 

Ln L 1961 5085 10600 

Parameters 240 240 240 

Individuals  118 118 118 

Observations 3502 1167 4669 

Source: Research Findings 

                                                                                                                             
1 For the only common high probability, 0.95, 𝑤(𝑝)  <  𝑑 in the both treatments with |𝑤(𝑝)  −
 𝑑|being higher in the low spaced treatment. 
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Figure 4. Probability Weighting Functions by the Imposed Utility Functions. 

Source: Research Findings 

5.3 Mixture Model 
As a representative-agent model cannot explain the observed difference 

between the high and low spaced treatments, a two-component mixture model 

is used for each treatment. Table 5 reports the mixing proportions and the 

behavioural parameters for each type which are called CPT type I and CPT 

type II. The interesting feature of the mixture model is the segregation of 

behavioural types. Since the estimation procedure provides us with each 

individual posterior probability of group membership, we can test the 

classification power of the mixture model. As such, Figure 5 shows the 

distribution of the individuals' posterior probabilities of group membership for 

each treatment. In this Figure 𝑐1 represents the posterior probability of 

belonging to CPT type I. As the Figure shows, the 𝑐1's are either close to 1 or 

close to 0 for most individuals, indicating a clear classification of types. 

Interestingly, the mixing proportion is almost the same under the two 

treatments, which also indicates a robust classification of types. 
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Figure 5. Distribution of Individuals' Posterior Probability of CPT Type I. 

Source: Research Findings 

While in the low spaced treatment, the utility and probability weighting 

parameters are close to 1 at least for CPT type I, in the high spaced treatment 

they are not. However, because the standard errors are very small, the 95%-

confidence interval of every single estimate does not contain unity. Thus, it 

seems there is no expected utility type in the data set. In the low spaced 

treatment, the estimated parameters 𝛼, 𝛽 and 𝛿 display high degree of 

conformity in both domains, whereas in the high spaced treatment only in the 

gain domain the estimated parameters 𝛼 and 𝛿 are close. Note that the major 

difference between the types is the difference in 𝛾 that controls the curvature 

of probability weighting function. This in turn, confirms the conjecture of 

Tversky and Kahneman (1992) on the curvature dependency of probability 

weighting functions on the space between the outcomes. 

I use the parameter estimates of the utility functions and the probability 

weighting functions to characterize risk-taking behaviour. Because of the dual 

structure of risk preferences under CPT, I first analyze the risk attitudes in 

terms of probabilities. Since there is only a coherent space effect in the gain 

domain, I focus only on the gain domain. Figure 6 illustrates the probability 

weighting functions. For CPT type I individuals, both treatments induce 

probability underweighting over the whole probability interval. Moreover, as 

it appears from Figure 6, the high spaced treatment induces more pronounced 
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probability weights. It is analogous to the size effect appeared in Fehr-Duda 

et al. (2010) in a sense that higher stakes induce more degree of high 

probabilities underweighting and less degree of low probabilities 

overweighting. Hence, in the minority group, more underweighting of high 

probabilities can capture a higher degree of risk aversion in the high spaced 

treatment. 

With regard to the majority (CPT type II) types who have more 

pronounced probability weights, the space effect induces less probability 

weighting in general. Low probabilities are over-weighted more in the low 

spaced treatment and high probabilities are underweighted more under the low 

spaced treatment, which does not capture the space effect emerged from the 

median 𝑅𝑅𝑃s. 

As the probability weighting functions cannot explain higher degree of 

risk-seeking over low probabilities of gain appeared in the high spaced 

treatment, I turn to the curvature of utility functions. While the characteristic 

of utility functions can be used to explain changes in relative risk aversion, it 

will only give a measure over the whole distribution of outcomes irrespective 

of their possibility of occurrence. In the minority group, changes in risk 

tolerance can be attributed to the way subjects weight outcomes. The 

coefficients of relative risk aversion are negative which indicates risk-seeking 

behaviour. As 𝛼 is higher in the high spaced treatment, it can take account of 

a higher degree of risk-seeking behaviour as compared to the low spaced 

treatment. In the majority group, however, the utility function from the low 

spaced treatment exhibits risk-seeking behaviour while the high spaced 

treatment shows risk aversion. 
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Table 5 

Classification of behaviour 
  CPT type I  CPT type II 

Parameters  High Low Pooled  High low Pooled 

𝜋  0.2474 0.2394 0.2237  0.7526 0.7606 0.7763 

  (0.0019) (0.0012) (0.0015)     
Gains         

𝛼  1.1159 1.0101 0.9884  0.9092 1.0301 0.9015 

  (0.0077) (0.0004) (0.0003)  (0.0036) (0.0016) (0.0006) 

𝛾  0.9387 0.9482 0.9448  0.5061 0.3948 0.4247 

  (0.0014) (0.0001) (0.0001)  (0.0004) (0.0002) (0.0001) 

𝛿  0.6814 0.8988 0.9087  0.7692 0.8077 0.8620 

  (0.0103) (0.0003) (0.0003)  (0.0066) (0.0005) (0.0005) 

Losses         

𝛽  1.8317 0.9896 1.0136  0.8997 1.0136 1.1214 

  (0.0121) (0.0006) (0.0006)  (0.0171) (0.0024) (0.0016) 

𝛾  1.3046 0.9459 0.9527  0.4732 0.4197 0.4515 

  (0.0021) (0.0005) (0.0001)  (0.0007) (0.0008) (0.0001) 

𝛿  0.3974 1.0704 1.0490  1.5579 1.0942 1.0591 

  (0.0027) (0.0008) (0.0006)  (0.0950) (0.0009) (0.0013) 

Ln L  2119 5625 11336     
Parameters  249 249 249     
Individuals   118 118 118     
Observations  3502 1167 4669        

Source: Research Findings 

As demonstrated in section 4.2, in the gain domain risk-seeking behaviour 

holds if 𝑤(𝑝)  >  𝑑. Thus, while in the minority group all probabilities are 

underweighted which mistakenly might be considered as risk aversion, the 

unique measure shows risk-seeking behaviour over 𝑝 =  (0.05, 0.1) under 

both treatments. As compared to the low spaced treatment, |𝑤(𝑝)  −
 𝑑|derived from the high spaced treatment is higher for both probabilities. 

Hence, in accordance with the observed difference in RRPs, the minority types 

are more risk-seeking when confronted with high spaced lotteries over low 

probabilities of gains. Moreover, the minority types exhibit a higher degree of 

risk aversion for 𝑝 =  0.95 under high spaced treatment as well.  

The majority types exhibit risk-seeking behaviour over 𝑝 = (0.05, 0.1,
0.25) under both treatments. As compared to the low spaced treatment, the 

|𝑤(𝑝)  −  𝑑| derived from the high spaced treatment is lower for all 

probabilities. Hence, subjects exhibit a higher degree of risk-seeking in the 

low spaced treatment. 
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Figure 6. Probability Weighting Functions by Types in the Gain Domain. 

Source: Research Findings 

6 Discussion and conclusion 
This paper has three objectives. Firstly, it studies the effect of an increase in 

the space between lotteries' outcomes on risk attitudes. Interestingly, we do 

find the space effect from data that was not collected to test it. The median of 

𝑅𝑅𝑃s sorted by the probability of the highest absolute outcome demonstrates 

a significant difference between the high and low spaced treatments. While 

there is no coherent picture in the loss domain, in the gain domain, the space 

effect implies greater reaction of subjects in terms of 𝑅𝑅𝑃s magnitudes. The 

space effect induces higher degree of risk-seeking for low probabilities of gain 

and higher degree of risk aversion for high probabilities of gain. 

Concerning the second objective, when assuming CPT preferences, the 

observed difference in 𝑅𝑅𝑃s cannot be attributed to any of the components of 

lotteries evaluation. In other words, changes in the parameter estimates are not 

meaningful. This misrepresentation of risk preferences might be due to 

interaction between probability weights and outcomes evaluation or the 

interaction between the stake and the space effect or all of them together. As 

many financial decisions involve subsequent follow-up decisions, carefully 
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designed experiments are called for, disentangling the size and space effect on 

risk attitudes and structural estimation of behavioural parameters. 

With regard to the heterogeneity among individuals, which is the third 

objective, this study demonstrates that heterogeneity can be pivotal in 

explaining the observed difference in 𝑅𝑅𝑃s. The two-component mixture 

model shows that a small percentage of the sample can be responsible for the 

observed difference in the row data, which is not recovered by the average 

behaviour determined by a representative-agent model. 

Furthermore, one might look at the reference point for an explanation of 

increasing 𝑅𝑅𝑃 as subjects might frame a positive gain based on the 

characteristic of the alternatives; the size and the space between them. 

However, as stated by Bruhin et al. (2010), simultaneous estimation of model 

parameters with the reference point is questionable when there are no mixed 

lotteries from the onset. 
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